Prediction of Chiller Power Consumption: An Entropy Generation Approach

J. Saththasivam, K.C. Ng
Heat Transfer Engineering, Volume 38, Issue 4, pp. 389-395, (2017)

Prediction of Chiller Power Consumption: An Entropy Generation Approach

Keywords

Cooling systems, Electric power utilization, Thermodynamics, Entropy generation, Faulty operations, Good correlations, Performance monitoring, Pressure and temperature, Refrigerant cycles, Second laws of thermodynamics, Vapor compression

Abstract

​Irreversibilities in each component of vapor compression chillers contribute to additional power consumption in chillers. In this study, chiller power consumption was predicted by computing the Carnot reversible work and entropy generated in every component of the chiller. Thermodynamic properties, namely, enthalpy and entropy of the entire refrigerant cycle were obtained by measuring the pressure and temperature at the inlet and outlet of each primary component of a 15-kW R22 water-cooled scroll chiller. Entropy generation of each component was then calculated using the first and second laws of thermodynamics. Good correlation was found between the measured and computed chiller power consumption. This irreversibility analysis can be also effectively used as a performance monitoring tool in vapor compression chillers, as higher entropy generation is anticipated during faulty operations.

Code

DOI: 10.1080/01457632.2016.1194697

Sources

Website PDF

See all publications 2017